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TERPENOID CONSTITUENTS OF OXANDRA ASBECKZZ 

WINSTON F. TINTO, LYNN C. BLAIR, 

Centrp fw Natural P m z h  C h i s t r y ,  University of Guyana, Gemgetawn, Gnyanu 

WILLIAM F. REYNOLDS,+ and STEWART MCLEAN 

D t p a r t m t  of Chemistry, U n i m i t y  of Twonto, Twonto, M5S l A l ,  C a d  

Assmua.-Three C3 triterpenoids, formally derived from 24-methyllanostane, have 
been identified in the leaves of Oxana’ra asbakii. The structures of two of these compound were 
assigned as 3, 2,3dioxo+xandrane, and 4, 3-hydroxyoxandrane, on the basis of the spectro- 
scopic characteristics of the natural products and their derivatives. Two-dimensional nmr 
methods, especially 2- and +bond I3C-’H shifi-correlation experiments using the FLOCK 
pulse sequence, were ofparamount importance for these assignments. The third triterpenoid, 3- 
hydroxyoxandran-2-one (51, was obtained, after acetylation of the crude residue, as its acetate 
8. A series of nOe difference measurements carried out on 8 established rhe main stereochemical 
features of the oxandrane skeleton. The leaves also afforded the alkaloid liriodenine and the ses- 
quiterpene spathulenol. 

Oxandra askk i i  (Pulle) R.E. Fries (Annonaceae), known locally as “karishiri” or 
lancewood, is a tree with a restricted range in central Guyana. An extract of the leaves 
has provided the alkaloid liriodenine El], the sesquiterpene spathulenol E21, and three 
novel methyltriterpenes 3, 4, and 5. 

The identity of liriodenine El], which is considered to be an ubiquitous alkaloid of 
the Annonaceae, was established by comparison of its physical properties with those re- 
ported in the literature (1). The structure of spathulenolE21 was deduced from its n m r  
spectra. Its relative configuration was established by the close correspondence of its 
physical properties, particularly its 13C-nmr spectrum, with those reported previously 
(2). 

The structures of the novel triterpenoids were investigated spectroscopically, and 
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26 

3 4 R = H  7 5 R = H  
6 R=Ac 8 R=Ac 
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Compound 

6 

the assignments made depended heavily on 2D nmr spectroscopy . Carbon multi- 
plicities were determined from APT spectra. while a standard HETCOR experiment 
established one-bond 13C- 'H connectivities. effectively labeling protonated carbons 
with their attached hydrogens . Our FLOCK pulse sequence was then used to determine 
longer-range n-bond connectivities (3) . The wealth of 2- and 3-bond connectivities ob- 
served was more than sufficient to establish the structures of the compounds in hand . 
Tables 1 and 2 summarize the 13C and 'H chemical shifts that have been assigned . The 
stereochemistry was determined by nOe difference measurements . The results reported 
below established that the triterpenoids isolated differ only in ring A . For convenience 
we have used the name oxandrane to describe the hypothetical parent compound with 
ring A at the oxidation level of cyclohexane . Few triterpenes have been reported from 
the Annonaceae. but the most common. polycarpol. has been assigned a structure based 
on the lanostane skeleton (1) . More recently. a C3,H,, O constituent of Artabotrys 

7 8 

Carbon 

I 

c - 1  . . . . .  
c-2 . . . . .  
c-3  . . . . .  
c-4 . . . . .  
c-5 . . . . .  
C-6 . . . . .  
c-7 . . . . .  
c-8 . . . . .  
c.9 . . . . . .  
c-10 . . . . .  
c-11 . . . . .  
c-12 . . . . .  
C-13 . . . . .  
C-14 . . . . .  
C-15 . . . . .  
C-16 . . . . .  
C-17 . . . . .  
c-18 . . . . .  
C-19 . . . . .  
c-20 . . . . .  
c-21 . . . . .  
c-22 . . . . .  
C-23 . . . . .  
C-24 . . . . .  
C-25 . . . . .  
C-26 . . . . .  
C-27 . . . . .  
C-28 . . . . .  
C-29 . . . . .  
C-30 . . . . .  
C-31 . . . . .  
M&=O . . .  
CH, CO . . .  

I 

rmm 1 . 13C Chemical Shifts of Triterpenoids 3.4.6.7.  and 8.' 

3 

124.89 
143.15 
200.75 
43.71 
50.16 
27.13 
21.14 
41.17 

143.83 
40.90 

115.84 
36.47 
44.10 
47.11 
33.80 
26.73 
48.03 
14.71 
24.38 
39.24 
65.57 
26.16 
33.02 
74.87 
39.34 
16.75 
17.15 
22.24 
25.82 
18.54 
14.56 
- 
- 

4 

36.08 
27.77 
78.90 
39.10 
52.46 
28.13 
21.33 
41.69 

148.57 
39.40 

114.69 
36.62 
44.09 
46.94 
33.76 
26.76 
48.07 
14.69 
22.19 
39.26 
65.63 
26.15 
33.02 
74.82 
39.36 
16.75 
17.15 
15.66 
28.24 
18.52 
14.57 
- 
- 

35.79 
24.14 
80.78 
38.00 
52.57 
28.03 
21.21 
41.69 

148.21 
39.28 

114.94 
36.65 
44.11 
46.94 
33.77 
26.77 
48.06 
14.70 
22.24 
39.30 
65.61 
26.18 
33.00 
74.75 
39.35 
16.76 
17.13 
16.80 
28.14 
18.53 
14.67 

170.82 
21.28 

36.72 
34.86 

217.10 
47.70 
53.41 
27.74 
22.54 
41.80 

147.17 
39.36 

116.06 
36.69 
44.10 
46.93 
33.76 
26.75 
48.05 
14.73 
21.73 
39.11 
65.62 
26.15 
33.02 
74.84 
39.27 
16.76 
17.15 
22.05 
25.62 
18.47 
14.62 
- 
- 

5 1.67 
204.47 

83.84 
45.24 
52.61 
27.63 
21.50 
41.84 

146.56 
43.28 

115.64 
36.51 
44.19 
47.00 
33.80 
26.89 
48.01 
14.80 
22.90 
39.31 
65.57 
26.26 
33.11 
74.83 
39.43 
16.89 
17.29 
17.65 
28.99 
18.69 
14.73 

170.30 
20.81 
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TABLE 2. 'H Chemical Shifts of Triterpenoids 3 ,4 ,6 ,  7, and 8.' 

Proton 

H-1 . . . . .  
H-2 . . . . .  
H-3 . . . . .  
H-5 . . . . .  
H-6 . . . . .  
H-7 . . . . .  
H-8 . . . . .  
H-11 . . . . . 
H-12 .  . . . . 
H-15 .  . . . . 
H-16 .  . . . . 
H-17 .  . . . . 
H-18 .  . . . . 
H-19 .  . . . . 
H-20 .  . . . . 
H-21 .  . . . . 
H-22 .  . . . . 
H-23 .  . . . . 
H-25 . . . . . 
H-26 .  . . . . 
H-27 . . . . . 
H-28 .  . . . . 
H-29 .  . . . . 
H-30 .  . . . . 
H-31.  . . . . 
Ac . . . . . . 

3 

6.58 
- 
- 

1.68 
1.70, 1.43 
<1.67> 

2.30 
5.46 
2.02, 1.78 
<1.38> 
1.87, 1.32 
1.57 
0.69 
1.28 
1.46 
3.85,3.25 
1.67, 1.22 
1.50, 1.40 
1.60 
0.88 
0.84 
1.08 
1.19 
0.73 
1.02 
- 

4 

1.80, 1.43 
< 1.93> 

3.21 
0.86 
1.64, 1.33 
1.67, 1.46 
2.15 
5.19 
2.00, 1.73 
<1.36> 
1.85, 1.32 
1.56 
0.66 
1.03 
1.46 
3.85,3.24 
1.68, 1.25 
1.38, 1.24 
1.61 
0.89 
0.85 
0.81 
0.98 
0.72 
1.03 
- 

Compound 

6 

1.80, 1.52 
1.76, 1.66 
4.48 
0.95 
1.64, 1.32 
1.66, 1.47 
2.15 
5.20 
2.01, 1.72 
<1.36> 
1.85, 1.32 
1.56 
0.66 
1.05 
1.46 
3.83,3.24 
1.68, 1.25 
1.51, 1.35 
1.60 
0.88 
0.85 
0.88 
0.85 
0.72 
1.03 
2.04 

7 

2.12, 1.83 
2.72,2.40 

1.73 
1.69, 1.33 
<1.67> 

2.22 
5.26 
2.03, 1.78 
<1.42> 
1.88, 1.34 
1.54 
0.70 
1.23 
1.47 
3.85,3.25 
1.72, 1.31 
1.64, 1.40 
1.62 
0.90 
0.86 
1.07 
1.06 
0.74 
1.04 

- 

- 

8 

<2.61> 
- 

4.93 
1.59 
1.70, 1.42 
<1.80> 

2.16 
5.15 
2.03, 1.72 
<1.39> 
1.87, 1.32 
1.59 
0.67 
1.04 
1.48 
3.83,3.24 
1.66, 1.22 
1.50, 1.36 
1.61 
0.89 
0.85 
0.86 
1.10 
0.76 
1.03 
2.18 

'Data obtained at 400 MHz with CIXI, solutions. Footnote to Table 1 describes basis for assign- 
ments. The 6, for each identifiable proton (or methyl) is listed. The <mean &.,> is reported for incom- 
pletely resolved CH, multiplets. 

odorotissinu~ has been reported to have the lanostane skeleton with the extra carbon ap- 
pearing as a methylene substituent at C-24 (4). 

2,3-Dioxo-oxandrane 137 was isolated as white crystals, mp 205-206", and the for- 
mula C, 1H24803 was determined by hrms. In the i t  the absorption at 1676 cm- ' indi- 
cated an a, P-unsaturated cyclohexanone, and OH-stretching absorption at 3444 and 
3400 cm- ' was also observed. Connectivity data (Table 3) established the main skeletal 
features. The 2- and 3-bond connectivities to the protons of methyl singlets were par- 
ticularly valuable because they effectively associate identifiable structural units with 
each methyl group. The overlap between these units was then sufficient for the lano- 
stane framework to be assigned unequivocally. The structure of the side chain, incor- 
porating the extra methyl (C-3 1) at C-24 and a tetrahydropyran ring, also followed 
from the observed connectivities. Connectivities to C-24 (6,74.87) are of importance 
because they establish the location of the terminal isopropyl unit and the C-3 1 methyl; 
the observed connectivity through the oxygen to a proton (6,3.85) on C-2 1 (6,65.57) 
confirmed the structural assignments to the heterocyclic ring. Connectivity data were 
also used to establish the substitution pattern on ring A. The 3-bond 13C-'H correla- 
tions between position l(6, 124.89, 6,6.58) and the methyl (6,24.38, 6, 1.28) at 
C- 10 were observed in both directions; C- 1 also showed a 3-bond connectivity to the 
proton of an OH group on C-2. 
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TABLE 3. Nmr 

Position 

1 .  . . . . . . . . . . . . . .  
2 .  . . . . . . . . . . . . . .  
3 . . . . . . . . . . . . . . .  
4 . . . . . . . . . . . . . . .  
5 . . . . . . . . . . . . . . .  
6 . . . . . . . . . . . . . . .  
7 . . . . . . . . . . . . . . .  
8 . . . . . . . . . . . . . . .  
9 .  . . . . . . . . . . . . . .  
10 . . . . . . . . . . . . . .  
11 . . . . . . . . . . . . . .  
12 . . . . . . . . . . . . . .  
13 . . . . . . . . . . . . . .  
14 . . . . . . . . . . . . . .  
15 . . . . . . . . . . . . . .  
16 . . . . . . . . . . . . . .  
17 . . . . . . . . . . . . . .  
18 . . . . . . . . . . . . . .  
19 . . . . . . . . . . . . . .  
20 . . . . . . . . . . . . . .  
21 . . . . . . . . . . . . . .  
22 . . . . . . . . . . . . . .  
23 . . . . . . . . . . . . . .  
24 . . . . . . . . . . . . . .  
25 . . . . . . . . . . . . . .  
26 . . . . . . . . . . . . . .  
27 . . . . . . . . . . . . . .  
28 . . . . . . . . . . . . . .  
29 . . . . . . . . . . . . . .  
30 . . . . . . . . . . . . . .  

and Connectivity Data for 2,3-Dioxo-oxandrane [31. 

6,' %Ib Observed n-bond connectivity' 

124.89 6.58 6.07, 1.28 
143.15 - 6.58,6.07 
20.75 - 6.58, 1.19, 1.08 
43.71 - 1.19, 1.08 
50.16 1.68 6.58, 1.28, 1.19, 1.08 
27.13 1.70, 1.43 2.30, 1.68 
21.14 1.67 1.68 
41.17 2.30 5.46,0.73 

115.84 5.46 2.02, 1.78 
36.47 2.02, 1.78 5.46,0.69 

143.83 - 1.67, 1.28 
40.90 - 1.68, 1.28 

44.10 - 0.73.0.69 
47.11 - 1.78,0.73,0.69 
33.80 1.38 0.73 
26.73 1.87, 1.32 
48.03 1.57 0.69 
14.71 0.69 
24.38 1.28 6.58, 1.68 
39.24 1.46 3.85, 1.50 
65.57 3.85.3.25 1.67, 1.46 
26.16 1.67, 1.22 3.85 
33.02 1.50, 1.40 1.02 
74.87 - 3.85, 1.22, 1.02,0.84 
39.34 1.60 1.02,0.88,0.84 
16.75 0.88 0.84 
17.15 0.84 0.88 
22.24 1.08 1.19 
25.82 1.19 1.08 
18.54 0.73 1.38 

The most abundant triterpenoid, C31H5202, was obtained crystalline, mp 201- 
202O, and its structure was assigned as 3-hydroxyoxandrane 141 by the spectroscopic 
methods described for 3. Due to the limited solubility of 4 in CDCI,, it was not possi- 
ble to obtain a FLOCK spectrum of this compound in CDCI,. Rather, the 2D spectra 
for structural and initial spectral assignments were measured in pyridine-df. Then a 
one-bond HETCOR spectrum was determined in CDCl, and 'H and 13C chemical 
shifts were assigned for 4 in this solvent by comparing with the previously assigned 
chemical shifts in pyridine-d5, and with the known chemical shifts for the two deriva- 
tives of 4 described below. The stereochemistry at C-3 with the OH equatorial was as- 
signed from the vicinal coupling constants of 10.5 and 5.4 Hz associated with the C-3 
proton. Ac20 in pyridine converted 4 to the acetate 6, and pyridinium chlorochromate 
oxidized 4 to oxandran-+one m. Both derivatives were crystalline, and each was com- 
pletely characterized in CDCI, solution by the spectroscopic methods described above, 
providing confirmation for the assignments made for 4. Chemical shift data for 4 in 
pyridine-d5, along with the connectivity data used to assign structures and spectra of 4, 
6, and 7, are available from the authors at the Toronto address. 
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The final triterpenoid, 3-hydroxyoxandran-2-one [5},  was not isolated directly, 
but i t  was obtained as the crystalline acetate 8, C,,H,,04, mp 2 19-220°, by treatment 
with Ac,O and pyridine of material from the mother liquors that had afforded 3 and 4. 
The amount of compound obtained was not suflicient for the n-bond shift-correlation 
experiment, but one-bond heteronuclear correlations were identified from a HETCOR 
spectrum. The chemical shift assignments for 8, Tables 1 and 2, were then made by 
comparison with the other compounds. The consistency shown for all positions except 
those in ring A left no doubt that the only difference between 8 and the other triter- 
penoids isolated was in ring A. It was clear that 8 is an a-acetoxy ketone, and the as- 
signment as the positional isomer shown was based on the observation that the proton, 
6 4.93, on the carbon bearing OAc was a singlet, and the ring CH, signals showed only 
geminal coupling; the 13C chemical shifts of the methyls at C-4 were also much more in 
accord with having an OAc at C-3 (rather than a carbonyl or CH,). It follows that the 
parent compound is 5 ,  but the presence of the acetate in the original extract can not be 
excluded. 

A series of nOe difference measurements was carried out on 8 in order to determine 
the stereochemistry. Irradiation of either the C- 18 or C- 19 protons produced a positive 
nOe (ca. 6%) at H-8, in accord with the lanostane stereochemistry, which has all three 
moieties on the same (p) face of the molecule. No nOe was observed between the C- 18 
and C-30 methyl protons, but irradiation of the C-30 methyl singlet produced a posi- 
tive nOe (ca. 5 % )  at H-17, again confirming the lanostane stereochemistry with both 
C-30 and H-17 on the a face. A positive nOe (ca. 4%) was observed for the protons of 
the methyl assigned as C-28 on irradiation of the C- 19 methyl protons, confirming the 
assignments made for C-28 and C-29. Irradiation of the C-29 methyl protons gave a 7% 
enhancement of the H-3 signal, requiring H-3 to be a and the OAc to be p. The car- 
bocyclic skeleton of 8 thus has the lanostane stereochemistry, and the side chain proba- 
bly also has the lanostane configuration, but present data fall short of proving this 
point. However, the relative configurations around the tetrahydropyran ring can be 
demonstrated. There is a transdiaxial coupling ( 11 Hz) between H-20 and the H-2 1 
proton at 6 3.24; this proton (6 3.24) showed a positive nOe when the C-3 1 methyl sig- 
nal was irradiated. Consequently, the C-3 1 methyl and H-20 have an anti relationship, 
and both are axial on the heterocyclic ring. 

Because of the consistencies exhibited in the nmr of the compounds listed in Tables 
1 and 2, the same stereochemistry can reasonably be assigned to all of them. That is to 
say, the oxandranes are substituted lanostanes. 

EXPERIMENTAL 
GENERAL EXPERIMENTAL PROCEDURES.-M~'S were determined on a micro hot stage. Selected ir 

absorptions (Ft-ir) obtained on a Nicolet 5DX spectrometer are reported in cm-'. Nmr spectra were ob- 
tained for CIXI, solutions (unless otherwise indicated); 'H spectra were obtained at 400 MHz and I3C 
spectra at 100 MHz on a Varian XL-400 spectrometer. A VG 70-250s mass spectrometer, operating at 70 
eV, was used to obtain mass spectra; mlz values (with intensity at % of base peak) are reported for significant 
peaks. Optical rotations were measured on a Perkin-Elmer 243B polarimeter. 

€"T MATERIAL.-PlantS were collected in the Essequibo region of Guyana in November 1987. 
Voucher specimens are deposited in the Herbarium of the University of Guyana and at the Institute of Sys- 
tematic Botany, University of Utrecht, Netherlands. 

ExTucrIoN.-Dried, ground leaves (1.1 kg) were extracted with EtOH (15 liters). T h e  solvent 
was removed under reduced pressure, and the residue was triturated with CHCI,. The CHCI, solution af- 
forded a residue that was partitioned between hexanes and MeOH-H,O (9: 1). H,O was added to the 
MeOH phase until it was 30% aqueous, and then it was extracted with CH,CI, (3 X 100 ml). The CH,CI, 
solution was extracted with diluted HCI, and the acidic extract, after basification, afforded liriodenine 111 
as yellow needles (6 mg), mp 28 1-284'. 
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The hexane phase afforded a residue that was chromatographed on SiO, gel with elution by hexanesl 
Me,CO mixtures of increasing polarity. 

2,3-Dioxwxrmdrane [ 3 ] . 4 m p o u n d  3 was isolated from early fractions and, after rechromatog- 
raphy (7% Me,CO/hexanes) and recrystallization from MeOH/CH,CI,, was obtained as white crystals (30 
mg): mp 205-206'; [a)D +75' (c=O.2, CHCI,); ir (KBr) 3400, 1676; eims 468 (12), 453 (52), 425 
(loo), 411 (30). 383 (16), 311 (16). 271 (20), 205 (35); hreims 468.3604, calcd for C31H4803r 
468.3603. 

3-Hydroxyoxundrune [4].-Compound 4 was isolated from later fractions and recrystallized from 
MeOWCH,CI, to provide white crystals (186 mg): mp 201-202"; [ a ] ~  +83' (c=O.24, pyridine); ir 
(KBr) 3336, 1038; eims 456 (l), 441 (9). 413 (loo), 395 (51), 313 (20), 273 (28), 175 (35), 135 (47); 
hreims 456.3967, calcd for C3,H5,02, 456.3967. Monoacetate 6: mp 191-192'; (U]D +80" (c=O.09, 
CHCI,); ir (KBr) 1733, 1246, 1039; eims 498 (3), 483 (12), 480 (7), 455 (loo), 438 (9), 423 (22), 395 
(68), 335 (20); hreims 498.4073, calcd for C,,H,,O,, 498.4073. Oxidation o f 4  (56 mg) with PCC in 
CH,CI, at room temperature for 4 h converted it to oxandran-3-one m, which was recrystallized from 
MeOWCH,CI, and obtained as white crystals: mp 212-213"; [ a ] ~  -7.5' (c=O.3, CHCI,); ir (KBr) 
17 11; hreims 454.38 11, calcd for C31H5002, 454.38 11. 

Mother liquors from fractions that provided 3 and 4 were evaporated, treated with Ac,Olpyridine, 
and subjected to preparative SiO, tlc [hexanes-Me,CO (2: 1)l to afford 8 (8 mg) and 2 (25 mg). 

3-Acetoxyoxandran-3-one [8]: mp 219-220" (from CH,CIJMeOH); [U]D -8' (e= 0.4, CHCI,); ir 
(KBr) 1751, 1729, 1239; eims 512 (2), 497 (6), 469 (loo), 451 (lo), 427 (12), 409 (31), 367 ( 1 4 ,  135 
(32); hreims 5 12.3866, calcd for C+&, 5 12.3866. 

Spathulenol [2} was obtained as a colorless gum: [ a ] ~  + 14.5' (e= 0.3, CHCI,); ir 3443; eims 220 
(14), 205 (90), 187 (40), 177 (26), 159 (72), 147 (659, 119 (loo), 105 (90); hreims 220.1827, calcd for 
CI5H24O, 220.1827. 
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